$ \overline{x_{k}} =\alpha x_{k}+(1-\alpha) \overline{x_{k-1}} $
$ \overline{x_{k}} =\alpha x_{k}+\alpha(1-\alpha) x_{k-1}+(1-\alpha)^{2} \overline{x_{k-2}}$
$ \overline{x_{k}} =\alpha x_{k}+\alpha(1-\alpha) x_{k-1}+\alpha(1-\alpha)^{2} x_{k-2}+(1-\alpha)^{3} \overline{x_{k-3}}$
$ \overline{x_{k}} =\alpha\left[x_{k}+(1-\alpha) x_{k-1}+(1-\alpha)^{2} x_{k-2}+(1-\alpha)^{3} x_{k-3} +\cdots+\\ \quad \quad(1-\alpha)^{k-1} x_{1}\right]+(1-\alpha)^{k} x_{0}$